C. Heinze

Motivation

- Chronotypes
- Intrinsic circadiar period

Model developm

Two-process model Entrainment models Extended Two-Process Model

Evolutionary Parameter Optimization

Results

- Model parameter correlations Distribution of circadian periods
- Conclusion
- References

Evolutionary simulations to determine the human circadian period using an extended sleep-wake model

¹Institute for System Analysis and Applied Numerics, Tabarz, Germany ²University of Applied Sciences Schmalkalden, Germany ³Circadian Technologies, Stoneham, MA, USA

15th International Conference on Modelling and Simulation Cambridge University, Apr. 10th, 2013

ション (日本) (日本) (日本) (日本) (日本) (日本)

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadian period

Model

- Two-process model Entrainment models Extended Two-Process Model
- Evolutionary Parameter Optimization

Results

- Model parameter correlations Distribution of
- circadian periods
- Conclusion
- References

Motivation

▲ロト ▲ 得下 ▲ ヨト ▲ ヨト 三日 - の Q ()

Sleep-wake behaviour

Different habits regarding sleep onset, wake up, sleep duration ... referred to as *chronotype*.

C. Heinze

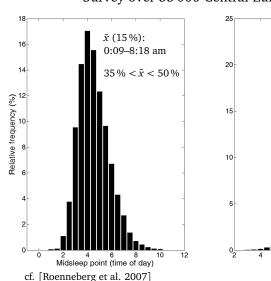
Motivation

Chronotypes

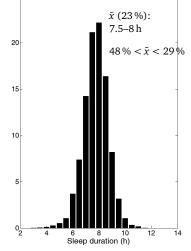
Intrinsic circadia period

Model developm

Two-process model Entrainment models Extended Two-Proces Model


Evolutionary Parameter Optimization

Results


Model parameter correlations Distribution of circadian periods

Conclusion

References

Survey over 55 000 Central Europeans:

イロト イポト イヨト イヨト

Chronotypes

C. Heinze

Motivation

Chronotypes

Intrinsic circadian period

Model

Two-process model Entrainment models Extended Two-Process Model

Evolutionary Parameter Optimization

Results

Model parameter correlations Distribution of circadian periods

Conclusion

References

Sleep-wake behaviour

Different habits regarding sleep onset, wake up, sleep duration ... referred to as *chronotype*.

Chronobiology

Different characteristics of the human inner clock, the so called *circadian* (i. e. near 24-h) *rhythm*.

Motivation

・ロト (雪) (ヨ) (ヨ)

-

C. Heinze

Motivation

Chronotypes

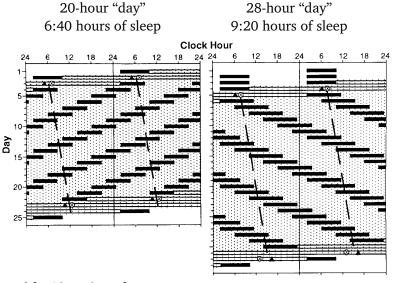
Intrinsic circadian period

Model

development

Two-process model Entrainment models Extended Two-Process Model

Evolutionary Parameter Optimization


Results

Model parameter correlations Distribution of

Conclusion

References

Forced desynchrony experiments

cf. [Czeisler et al. 1999]

C. Heinze

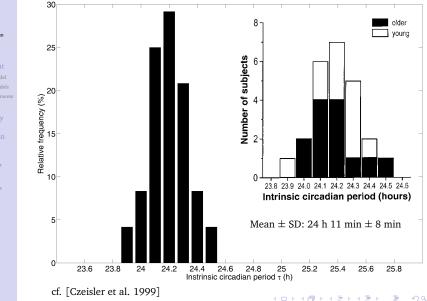
Chronotypes

Intrinsic circadian period

Model developme

Two-process model Entrainment models Extended Two-Proce Model

Evolutionary Parameter Optimization


Results

Model parameter correlations Distribution of circadian periods

Conclusion

References

Forced desynchrony experiments

C. Heinze

Motivation

Chronotypes

Intrinsic circadian period

Model

Two-process model Entrainment models

Extended Two-Process Model

Evolutionary Parameter Optimization

Results

Model parameter correlations Distribution of circadian periods

Conclusion

References

Sleep-wake behaviour

Different habits regarding sleep onset, wake up, sleep duration ... referred to as *chronotype*.

Chronobiology

Different characteristics of the human inner clock, the so called *circadian* (i. e. near 24-h) *rhythm*.

Understand the connection between phenomena

- Which models exist for explaining sleep-wake timing and chronobiological behaviour?
- What relations between different parameters can be revealed by combing existing models?

Motivation

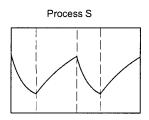
C. Heinze

Motivation

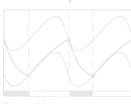
- Chronotypes
- Intrinsic circadiar period

Model developme

Two-process model

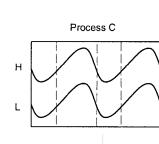

Entrainment models Extended Two-Process Model

Evolutionary Parameter Optimization

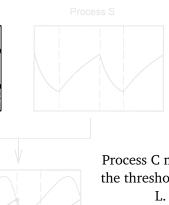

Results

- Model parameter correlations Distribution of
- circadian periods
- Conclusion
- References

Two-process model


Process S rises during waking and declines during sleep.

cf. [Achermann 2004]


Sleep Waking

C. Heinze

Two-process model

Two-process model

Process C modulates the thresholds H and

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

cf. [Achermann 2004]

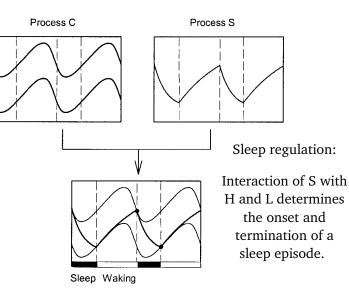
C. Heinze

Motivation

- Chronotypes
- Intrinsic circadia period

н

L

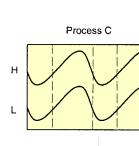

Model developme

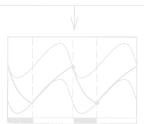
Two-process model

- Entrainment models Extended Two-Process Model
- Evolutionary Parameter Optimization

Results

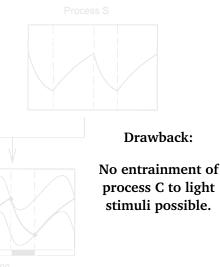
- Model parameter correlations Distribution of
- circadian periods
- Conclusion
- References




cf. [Achermann 2004]

Two-process model

C Heinze


Two-process model

cf. [Achermann 2004]

Two-process model

C. Heinze

Motivation

Chronotypes

Intrinsic circadiar period

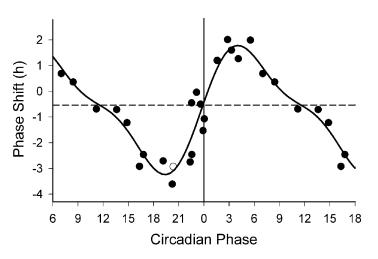
Model developmer

Two-process model

Entrainment models

Extended Two-Proces Model

Evolutionary Parameter Optimization


Results

Model parameter correlations Distribution of circadian periods

Conclusion

References

Phase response curve to light

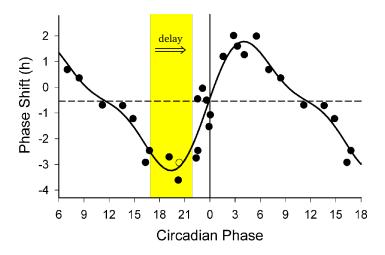
C. Heinze

Motivation

- Chronotypes
- Intrinsic circadiar period

Model developmen

Two-process model


Entrainment models

- Extended Two-Process Model
- Evolutionary Parameter Optimization

Results

- Model parameter correlations Distribution of circadian periods
- Conclusion
- References

Phase response curve to light

C. Heinze

Motivation

Chronotypes

Intrinsic circadiar period

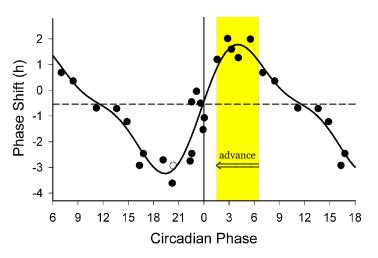
Model developmer

Two-process model

Entrainment models

Extended Two-Process Model

Evolutionary Parameter Optimization


Results

Model parameter correlations Distribution of circadian periods

Conclusion

References

Phase response curve to light

・ロト・西ト・ヨト・ヨー シック

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadiar period

Model developme

- Two-process model
- Entrainment models
- Extended Two-Process Model

Evolutionary Parameter Optimization

Results

- Model parameter correlations
- circadian periods
- Conclusion
- References

Extended Two-Process Model

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadiar period

Model developme

- Two-process model
- Entrainment models
- Extended Two-Process Model

Evolutionary Parameter Optimization

Results

- Model parameter correlations
- circadian periods
- Conclusion
- References

Extended Two-Process Model

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadiar period

Model developme

- Two-process model
- Entrainment models
- Extended Two-Process Model

Evolutionary Parameter Optimization

Results

- Model parameter correlations
- circadian periods
- Conclusion
- References

Extended Two-Process Model

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadiar period

Model developme

- Two-process model
- Entrainment models
- Extended Two-Process Model

Evolutionary Parameter Optimization

Results

- Model parameter correlations
- circadian periods
- Conclusion
- References

Extended Two-Process Model

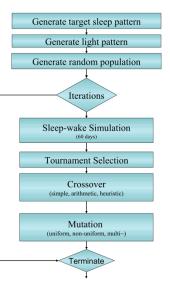
τ , amplitude C_L & C_H, level C_L & C_H, $\phi_{\rm C}$, $\Delta \phi_{\rm C-PRC}$, amplitude & width PRC & ARC, ...

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadia period

Model developm


Two-process model Entrainment models Extended Two-Proces Model

Evolutionary Parameter Optimization

Results

- Model parameter correlations Distribution of
- Conclusion
- References

Evolutionary Optimization

Optimize a population of chronotypes:

For each chronotype, model parameters have to be adapted such, that chronotype's sleep-wake behaviour is met with smallest possible error.

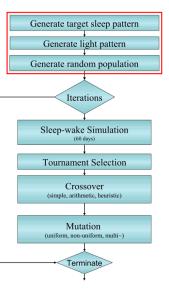
・ロト・西ト・ヨト・ヨー シック

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadia period

Model developm


Two-process model Entrainment models Extended Two-Proces Model

Evolutionary Parameter Optimization

Results

- Model parameter correlations Distribution of
- circadian period
- Conclusion
- References

Evolutionary Optimization

Initialization:

Generate population of chronotypes such, that empirical distribution is

met.

・ロト・西ト・ヨト・ヨト・ 日・ つへぐ

C. Heinze

Motivation

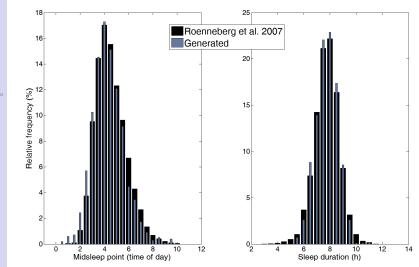
Chronotypes

Intrinsic circadia period

Model developm

Two-process model Entrainment models Extended Two-Proce Model

Evolutionary Parameter Optimization


Results

Model parameter correlations Distribution of circadian periods

Conclusion

References

Population initialization

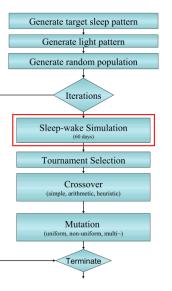
・ロト・西ト・山田・山田・山下・

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadia period

Model developm


Two-process model Entrainment models Extended Two-Proces Model

Evolutionary Parameter Optimization

Results

- Model parameter correlations Distribution of
- circadian period
- Conclusion
- References

Evolutionary Optimization

Fitness assignment:

Calculate deviation of simulated sleep-pattern from target sleep-pattern.

・ロト・西ト・山田・山田・山下・

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadiar period

Model developme

Two-process model Entrainment models Extended Two-Proces Model

Evolutionary Parameter Optimization

Results

- Model parameter correlations Distribution of
- Conclusion
- References

Fitness assignment

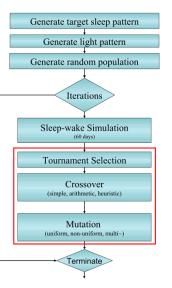
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadia period

Model developm


Two-process model Entrainment models Extended Two-Proces Model

Evolutionary Parameter Optimization

Results

- Model parameter correlations Distribution of
- Conclusion
- References

Evolutionary Optimization

Various evolutionary operations applied.

Probability for each ...

crossover variant = 12%mutation variant = 15%

C. Heinze

Motivation

Chronotypes

Intrinsic circadia period

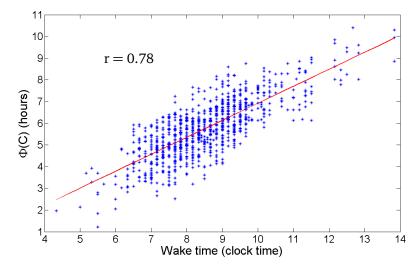
Model developme

Two-process model Entrainment models Extended Two-Proces Model

Evolutionary Parameter Optimization

Results

Model parameter correlations


Distribution of circadian periods

Conclusion

References

Model parameter correlations

Wake time vs. $\phi_{\rm C}$

・ロト・西ト・山田・山田・山下・

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadiar period

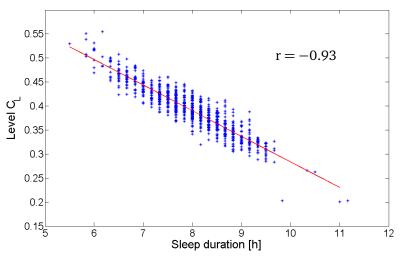
Model developme

Two-process model Entrainment models Extended Two-Proces Model

Evolutionary Parameter Optimization

Results

Model parameter correlations


Distribution of circadian periods

Conclusion

References

Model parameter correlations

Sleep duration vs. Level C_L

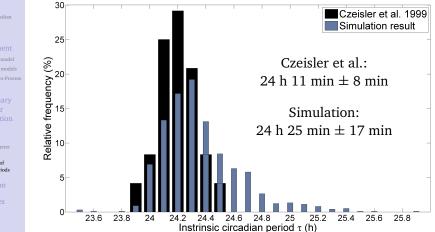
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

C. Heinze

Motivation

Chronotypes Intrinsic circadia period

Model developme


Two-process model Entrainment models Extended Two-Proces Model

Evolutionary Parameter Optimization

Results

- Model parameter correlations
- Distribution of circadian periods
- Conclusion
- References

Distribution of circadian periods

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● のへの

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadian period

Model developme

- Two-process model Entrainment models Extended Two-Process Model
- Evolutionary Parameter Optimization

Results

- Model parameter correlations Distribution of
- Conclusion
- References

Conclusion

▲ロト ▲ 得下 ▲ ヨト ▲ ヨト 三日 - の Q ()

Model extension

Feedback loop established between sleep-wake behaviour and chronobiological responses.

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadian period

Model developme

Two-process model Entrainment models Extended Two-Process Model

Evolutionary Parameter Optimization

Results

Model parameter correlations Distribution of circadian periods

Conclusion

References

Conclusion

・ロト (雪) (ヨ) (ヨ)

-

Model extension

Feedback loop established between sleep-wake behaviour and chronobiological responses.

Not mastering all light conditions yet

• Plausible results for day-night equilibrium

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadian period

Model developme

Two-process model Entrainment models Extended Two-Process Model

Evolutionary Parameter Optimization

Results

Model parameter correlations Distribution of circadian periods

Conclusion

References

Conclusion

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Model extension

Feedback loop established between sleep-wake behaviour and chronobiological responses.

Not mastering all light conditions yet

- Plausible results for day-night equilibrium
- Unrealistic for extreme day/night length differences

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadian period

Model developme

Two-process model Entrainment models Extended Two-Process Model

Evolutionary Parameter Optimization

Results

Model parameter correlations Distribution of circadian periods

Conclusion

References

Conclusion

Model extension

Feedback loop established between sleep-wake behaviour and chronobiological responses.

Not mastering all light conditions yet

- Plausible results for day-night equilibrium
- Unrealistic for extreme day/night length differences

Current work

Make subharmonic periodic components of process C available to optimization — good agreement of simulated and empirical sleep episodes in a current study.

C. Heinze

Motivation

- Chronotypes
- Intrinsic circadian period

Model developm

- Two-process model Entrainment models Extended Two-Process Model
- Evolutionary Parameter Optimization

Results

Model parameter correlations Distribution of circadian periods

Conclusion

References

Literature references I

Achermann P.

The Two-Process Model of Sleep Regulation Revisited. *Aviation, Space, and Environmental Medicine*, 75(3, Suppl.):A37–43, 2004.

Achermann P, Kunz H.

Modeling Circadian Rhythm Generation in the Suprachiasmatic Nucleus with Locally Coupled Self-Sustained Oscillators: Phase Shifts and Phase Response Curves.

Journal of Biological Rhythms, 14(460):460-8, 1999.

Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, Dijk D-J, Kronauer RE.

Stability, Precision, and Near-24-Hour Period of the Human Circadian Pacemaker.

Science, 284(5423):2177-81, 1999.

C. Heinze

Motivation

Chronotypes

Intrinsic circadiar period

Model developme

Two-process model Entrainment models Extended Two-Process Model

Evolutionary Parameter Optimization

Results

Model parameter correlations Distribution of circadian periods

Conclusion

References

Literature references II

Daan S, Beersma DG, Borbély AA.

Timing of human sleep: recovery process gated by a circadian pacemaker.

American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 246(2): R161–83, 1984.

Khalsa SBS, Jewett ME, Cajochen C, Czeisler CA. A phase response curve to single bright light pulses in human subjects.

Journal of Physiology, 549(3):945–52, 2003.

 Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, Merrow M.
Epidemiology of the human circadian clock. *Sleep Medicine Reviews*, 11(6):429–38, 2007.