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Abstract—The development of the human sleep-wake cycle
and the adaptation to the changing day and night condition
on our planet took place over a time frame of 100 000
years. As the result, a representative cross section of today’s
population sleeps between 4 and 11 hours, with a midsleep
point between 1.00 and 9.00 am and a period length of
the human circadian pacemaker between 23.5 and 25 hours.
Roenneberg et al. published the distribution of midsleep point
and sleep duration based on an extensive questionnaire which
represents the Middle European society. Czeisler presented
a normal distribution of the period length of the human
circadian pacemaker as result of a forced desynchrony study.
The sleep wake characteristic can be described with the well
established two-process model (2PM). The adaptation of the
period of our pacemaker to the 24-h day by light is best
understood in terms of the phase response curve (PRC). We
introduce a combination of these two well established models,
called extended two-process model (E2PM). With this model,
the sleep-wake behaviour and the circadian period of man
under natural day (light) and night (dark) conditions can be
simulated simultaneously. With this model, 250 different sleep-
wake types were parametrized using evolutionary algorithms.
As a breakthrough, the resulting distribution of one important
parameter, the sleep-wake cycle duration, matches closely the
experimentally acquired distribution of Czeisler.
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I. INTRODUCTION

Since decades different models have been proposed to
predict the wide range of human sleep-wake behaviour. The
following subsections will shed light on the core features
of the human sleep-wake rhythm and existing mathematical
models. Afterwards, we introduce a combination of two
broadly accepted models and use evolutionary algorithms
(EA) to optimize the models’ parameters to match the widely
varying sleep-wake behaviour.

A. Chronotypes

Humans vary in their individual timing of physiological
cycles – such as body temperature, hormone release and,
most obviously, their sleep and wake times. The distinct

timing of the sleep-wake cycle is referred to as chronotype.
Roenneberg surveyed more than 55 000 Middle Europeans
with his Munich Chronotype Questionnaire and published
the distributions for sleep duration and midsleep (see black
bars in figure 2). Midsleep is the time halfway between
sleep onset and wake-up. According to his survey, sleep
duration and midsleep are largely normally distributed and
uncorrelated [1], [2].

B. Bunker Experiments

Back in the 1970s, Aschoff and Wever [3] pioneered
studies of the human sleep-wake rhythm. In the so-called
bunker experiments in Andechs, Germany, more than 470
subjects lived self-selected sleep-wake-rhythms in chambers
isolated from natural light and any other time cues for
weeks [4]. Activity, body temperature and sleep times were
recorded. Surprisingly, the period of subsequent sleep-wake
cycles of the subjects lengthened during the first few days
in isolation, and eventually settled just above the length of
the 24-h day . The course of the body temperature – with its
peak in the early subjective evening and its nadir in the late
night – gives a superior estimation of the circadian period
length (τ ) and its phase in the 24-h day. Wever described
a normal distribution in human circadian periods ranging
from 23 to 26 hours, with an average of 25.2 hours under
time isolated and self-selected light-dark conditions [3]. The
astonishing results of the bunker experiments underlined
the idea of an endogenous circadian (i. e. near 24-hour)
pacemaker that times the sleep-wake pattern in humans. The
synchronization process of this body clock with the 24-hour
day is called entrainment and will be discussed later.

C. Forced Desynchrony Experiments

In the 1990s, Czeisler and his group applied a forced
desynchrony protocol to determine the average period length
τ of the human endogenous circadian pacemaker. In these
experiments, 21 subjects were scheduled to live through
artificial 28-hour ‘days’ for 3.5 weeks, while their body



temperature, melatonin levels and other measures were
continuously recorded. By administering such a schedule
beyond the range of entrainment of the intrinsic body clock,
body temperature, hormone production and other circadian
rhythms are decoupled from the sleep-wake rhythm. This
allows precise measurement of the unmasked human cir-
cadian cycle. As a result, a normal distribution of τ was
determined to be 24.18 hours ± 0.04 hours, ranging from
23.53 to 24.59 hours [5]. Czeisler explained the difference
to the free-running periods in Aschoff’s and Wever’s bunker
experiments with a probable bias that the subjects induced
on themselves due to their self-selected light regime.

D. Modelling the Entrainment

Researchers determined that light is the major synchro-
nizer for the circadian pacemaker to the 24-hour solar day
[6]. The entraining and phase-shifting effects of light to
circadian rhythms in general have been studied extensively
since 1959 on various species [7], [8].

According to these observations, the phase-response curve
(PRC) model was introduced by Moore-Ede [9] and others,
as illustrated in figure 1. Light shortly before the nadir of
the body core temperature delays the phase of the circadian
processes (and thus the sleep-wake rhythm), light after the
nadir will advance this phase [10]. The singularity of the
PRC corresponds with the nadir of the body temperature.

Changes in the amplitude of the circadian rhythms were
reported by Hildebrand [11] and Jewett [10] when inverting
the sleep-wake pattern e. g. during night shifts. Achermann
[12] and Kronauer [13] proposed a combination of PRC and
amplitude-response curve (ARC) to model this attenuating
impact of light to the circadian amplitudes around the nadir
of the body temperature. Recovery occurs when light hits
only the outer areas of the ARC.

E. Two-Process Model

The two-process model (TPM) published by Daan et
al. [14] simulates sleep-wake cycles for any regular sleep
type. As illustrated in the upper part of figure 1, sleep
pressure (S) rises and falls between the upper and lower
circadian thresholds (CH and CL, respectively). When S
meets CH , sleep starts and S declines. When S meets CL,
the simulation state changes to awake and S rises with
logistic growth. The sleep duration can be prolonged by
lowering the base levels of CL and CH , and the phases of
CL and CH determine the timing of sleep onset and wake
up. The TPM has been tested extensively against real data,
and core parameters for S were derived from EEG data [15],
[16].

F. Extended Two-Process Model

In the original publication, the TPM does not support
the entrainment of its circadian processes to a changing
light environment. Combining the TPM with the PRC and

Figure 1. Illustration of the extended two-process-model (E2PM) for
several days. Upper part: process S (sleep pressure, solid) oscillates
between the upper and lower circadian thresholds CH and CL, respectively
(dashed, stitched curves). Gray areas indicate the sleep state. Lower part:
yellow bars indicate daylight illumination, black bars night light. Light
that hits the phase-response curve (PRC, dashed line) during wakefulness
induces phase advances in the subjective morning and phase delays in
the subjective evening, respectively. The amplitude response curve (ARC,
solid grey) reflects the attenuation of the circadian processes if light meets
wakefulness during the subjective midnight.

ARC thus enables synchronization to the 24-hour day under
real-world light conditions as illustrated in figure 1: the
oscillators PRC, ARC, CH and CL run at the same period
length τ . Light that hits the PRC during wake times shifts
the phase of all of those oscillators, and light on the ARC
affects the amplitudes of the circadian thresholds CH and
CL. The homoeostatic sleep-wake behaviour will then adapt
to the altered phase relationships between the oscillators.
This in return changes the timing at which the simulation
is influenced by light. In this way, a feedback loop is
established, and entrainment of the sleep-wake rhythm to
light can be simulated.

G. Evolutionary Algorithms

Over hundreds of millions of years, evolution has created
an incredible range of life forms perfectly adapted to its
respective habitats on earth. Survival of the fittest, cross
combination and random mutation led to this great optimiza-
tion result. Evolutionary algorithms (EA) were developed
in the 1980s to mimic this process in order to solve high-
dimensional optimization problems [17]. First, a random
population of feasible solutions is generated and the fitness
for each solution is determined with a cost function. Then,
the best solutions are selected for the next generation and
produce offspring by recombining their variables. An addi-



Figure 2. Distribution of habitual midsleep point (upper half) and sleep
duration (lower half) of Middle Europeans according to Roenneberg’s
survey [2] (black bars) and for all successfully parametrized sleep-wake
types during seven EA parameter optimization iterations (grey bars). The
initial set of sleep-wake types was randomly generated within Roenneberg’s
range of midsleep and sleep duration.

tional amount of mutation provides good exploration of the
search space and prevents convergence on potentially local
minima. This process is iterated for a predefined number of
generations or until the optimization target is reached.

II. MODEL PARAMETER OPTIMIZATION WITH
EVOLUTIONARY ALGORITHMS

To prove the capabilities of the E2PM, it must be able
to simulate the whole range of human sleep-wake habits.
250 sleep-wake types were randomly selected as target
set according to the sleep-wake distribution presented by
Roenneberg [2] (see figure 2). Fitting the model parameters
(τ and phase angles, amplitudes, level and shape parameters
for CL, CH , ARC and PRC) to these sleep-wake habits
is a complex optimization task for which EA were used.
Parametrization of a single sleep-wake type with EA works
as follows: First, a target sleep-wake pattern is generated
for a simulation length of 40 days, based on the desired

Figure 3. Distributions of endogenous circadian period τ , experimentally
measured by Czeisler et al. [5] (black bars) and as a result of EA parameter
optimization (grey bars) display a close match.

habitual midsleep point and sleep duration. Next, a set of
100 random solutions are generated within a feasible range
(e.g. 22 ≤ τ ≤ 27h).

Solutions (i. e. parameter sets) are commonly called indi-
viduals, and the amount of individuals is called population.
Each individual is now simulated for 60 days with the E2PM
under a fixed illumination pattern of 12 hours daylight and
12 hours without light, according to the Middle European
equinox. The simulation time slot interval is set to 10
minutes. For each time slot of the simulation, the simulation
output, i. e. state of sleep or state of wake, is stored in a result
pattern. The fitness of the individual is calculated as the
absolute difference between the target and result sleep-wake
pattern. That is, for each time slot, the error is increased if
the targeted and simulated states differ.

Based on the calculated fitness of the entire population,
merely the best individuals are selected for the subsequent
generation; the remaining 50 % are discarded. Random pairs
of selected individuals are recombined, i. e. variables from
both parents are propagated to their offspring by arithmetic,
heuristic and simple cross-combination [17], [18], until the
initial population size is reached. Then, simple and non-
uniform mutations are applied to a random subset of the
new population, whereby the best solutions are spared (elitist
model). The impact of the non-uniform mutations decreases
with higher generation numbers [19]. Next, the fitness for
new or mutated parameter sets is calculated, before the pro-
cess of selection, recombination and mutation starts again.
This procedure is repeated for 80 generations.

The described combination of different recombination and
mutation operators ensures fine-tuning during higher genera-
tions and reduces the likelihood to get stuck in local minima,
which is a core challenge in traditional optimization.



III. RESULTS

The resulting parameter sets were simulated with the
E2PM and tested for stability. Solutions that did not match
the self-selected target of less than 10 minutes difference per
day between desired and simulated sleep-wake behaviour
were recalculated. A high mutation rate of 15 % actually
led to better results and less recalculation demand. Being
a heuristic approach, EA might not always find the best
solution, but usually will provide good results.

The described parametrization procedure was executed
seven times on all generated sleep-wake types, and the
resulting successful parameter sets were consolidated. Ex-
amination of the solutions displayed normal distribution for
most of the parameters at the centre of their range.

Outstanding is the distribution of τ (figure 3). Within the
limits of 22 hours to 27 hours during the EA parametrization,
τ was normally distributed with an average of 24.41 h ±
0.28. This result lies in between the experimentally measured
τ = 24.18 h ± 0.04 h by Czeisler [5] and τ = 25.2 h
measured by Wever [3]. As far as our investigations go, such
result can only be achieved with the described combination
of ARC, PRC and TPM to one single model.

IV. CONCLUSION

To our knowledge, it is the first time that these two
experimental data sets were matched by simulations with
EA based parameter optimization. The combination of TPM,
PRC and ARC to model sleep homoeostasis and circadian
entrainment by ambient light may be considered a usable
approach for a realistic simulation of the human sleep-
wake behaviour. Further publications of simulation results
on phase shifting responses to various light conditions and
sleep homoeostasis are in work.
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